Sunday 27 April 2014

SSIDs, WEP, and MAC Address Authentication

What the original designers of 802.11 did to create basic security was include the use of Service Set Identifiers (SSIDs), open or shared-key authentication, static Wired Equivalency Protocol(WEP), and optional Media Access Control (MAC) authentication. Sounds like a lot, but none of these really offer any type of serious security solution—all they may be close to adequate for is use on a common home network. But we’ll go over them anyway…

SSID is a common network name for the devices in a WLAN system that create the wireless LAN. An SSID prevents access by any client device that doesn’t have the SSID. The thing is, by default, an access point broadcasts its SSID in its beacon many times a second. And even if SSID broadcasting is turned off, a bad guy can discover the SSID by monitoring the network and just waiting for a client response to the access point. Why? Because, believe it or not, that information, as regulated in the original 802.11 specifications, must be sent in the clear—how secure!

Two types of authentication were specified by the IEEE 802.11 committee: open and shared-key authentication. Open authentication involves little more than supplying the correct SSID—but it’s the most common method in use today. With shared-key authentication, the access point sends the client device a challenge-text packet that the client must then encrypt with the correct Wired Equivalency Protocol (WEP) key and return to the access point. Without the correct key, authentication will fail and the client won’t be allowed to associate with the access point. But shared-key authentication is still not considered secure because all an intruder has to do to get around this is detect both the clear-text challenge and the same challenge encrypted with a WEP key and then decipher the WEP key. Surprise—shared key isn’t used in today’s WLANs because of clear-text challenge.

With open authentication, even if a client can complete authentication and associate with an access point, the use of WEP prevents the client from sending and receiving data from the access point unless the client has the correct WEP key. A WEP key is composed of either 40 or 128 bits and, in its basic form, is usually statically defined by the network administrator on the access point and all clients that communicate with that access point. When static WEP keys are used, a network administrator must perform the time-consuming task of entering the same keys on every device in the WLAN. Obviously, we now have fixes for this because this would be administratively impossible in today’s huge corporate wireless networks!

Last, client MAC addresses can be statically typed into each access point, and any of them that show up without that MAC addresses in the filter table would be denied access. Sounds good, but of course all MAC layer information must be sent in the clear—anyone equipped with a free wireless sniffer can just read the client packets sent to the access point and spoof their MAC address.

WEP can actually work if administered correctly. But basic static WEP keys are no longer a viable option in today’s corporate networks without some of the proprietary fixes that run on top of it. So let’s talk about some of these now.

No comments:

Post a Comment