Sunday 14 September 2014

Ethernet at the Physical Layer

Ethernet was first implemented by a group called DIX (Digital, Intel, and Xerox). They created and implemented the first Ethernet LAN specification, which the IEEE used to create the IEEE 802.3 Committee. This was a 10Mbps network that ran on coax and then eventually twisted pair and fiber physical media.

The IEEE extended the 802.3 Committee to two new committees known as 802.3u (Fast Ethernet) and 802.3ab (Gigabit Ethernet on category 5) and then finally 802.3ae (10Gbps over fiber and coax).

Figure 1 shows the IEEE 802.3 and original Ethernet Physical layer specifications.

When designing your LAN, it’s really important to understand the different types of Ethernet media available to you. Sure, it would be great to run Gigabit Ethernet to each desktop and 10Gbps between switches, and although this might happen one day, justifying the cost of that network today would be pretty difficult. But if you mix and match the different types of Ethernet media methods currently available, you can come up with a cost-effective network solution that works great.

FIGURE 1 Ethernet Physical layer specifications
The EIA/TIA (Electronic Industries Association and the newer Telecommunications Industry Alliance) is the standards body that creates the Physical layer specifications for Ethernet.The EIA/TIA specifies that Ethernet use a registered jack (RJ) connector with a 4 5 wiring sequence on unshielded twisted-pair (UTP) cabling (RJ45). However, the industry is moving toward calling this just an 8-pin modular connector.

Each Ethernet cable type that is specified by the EIA/TIA has inherent attenuation, which is defined as the loss of signal strength as it travels the length of a cable and is measured in decibels (dB). The cabling used in corporate and home markets is measured in categories. A higherquality cable will have a higher-rated category and lower attenuation. For example, category 5 is better than category 3 because category 5 cables have more wire twists per foot and therefore less crosstalk. Crosstalk is the unwanted signal interference from adjacent pairs in the cable.

Here are the original IEEE 802.3 standards:

10Base2 10Mbps, baseband technology, up to 185 meters in length. Known as thinnet and
can support up to 30 workstations on a single segment. Uses a physical and logical bus with
AUI connectors. The 10 means 10Mbps, Base means baseband technology (which is a signaling
method for communication on the network), and the 2 means almost 200 meters. 10Base2
Ethernet cards use BNC (British Naval Connector, Bayonet Neill Concelman, or Bayonet Nut
Connector) and T-connectors to connect to a network.

10Base5 10Mbps, baseband technology, up to 500 meters in length. Known as thicknet.
Uses a physical and logical bus with AUI connectors. Up to 2,500 meters with repeaters and
1,024 users for all segments.

10BaseT 10Mbps using category 3 UTP wiring. Unlike with the 10Base2 and 10Base5 networks,
each device must connect into a hub or switch, and you can have only one host per segment
or wire. Uses an RJ45 connector (8-pin modular connector) with a physical star topology
and a logical bus.

Each of the 802.3 standards defines an Attachment Unit Interface (AUI), which allows a one-bit-at-a-time transfer to the Physical layer from the Data Link media access method. This allows the MAC to remain constant but means the Physical layer can support any existing and new technologies. The original AUI interface was a 15-pin connector, which allowed a transceiver(transmitter/receiver) that provided a 15-pin-to-twisted-pair conversion.

The thing is, the AUI interface cannot support 100Mbps Ethernet because of the high frequencies involved. So 100BaseT needed a new interface, and the 802.3u specifications created one called the Media Independent Interface (MII), which provides 100Mbps throughput. The MII uses a nibble, defined as 4 bits. Gigabit Ethernet uses a Gigabit Media Independent Interface(GMII) and transmits 8 bits at a time.

802.3u (Fast Ethernet) is compatible with 802.3 Ethernet because they share the same physical characteristics. Fast Ethernet and Ethernet use the same maximum transmission unit (MTU), use the same MAC mechanisms, and preserve the frame format that is used by 10BaseT Ethernet.

Basically,Fast Ethernet is just based on an extension to the IEEE 802.3 specification, except that it
offers a speed increase of 10 times that of 10BaseT.

Here are the expanded IEEE Ethernet 802.3 standards:

100BaseTX (IEEE 802.3u) EIA/TIA category 5, 6, or 7 UTP two-pair wiring. One user per segment; up to 100 meters long. It uses an RJ45 connector with a physical star topology and a logical bus.

100BaseFX (IEEE 802.3u) Uses fiber cabling 62.5/125-micron multimode fiber. Point to point topology; up to 412 meters long. It uses an ST or SC connector, which are media interface connectors.

1000BaseCX (IEEE 802.3z) Copper twisted-pair called twinax (a balanced coaxial pair) that can only run up to 25 meters.

1000BaseT (IEEE 802.3ab) Category 5, four-pair UTP wiring up to 100 meters long.

1000BaseSX (IEEE 802.3z) MMF using 62.5- and 50-micron core; uses an 850 nano-meter laser and can go up to 220 meters with 62.5-micron, 550 meters with 50-micron.

1000BaseLX (IEEE 802.3z) Single-mode fiber that uses a 9-micron core and 1300 nanometer laser and can go from 3 kilometers up to 10 kilometers.

Note:If you want to implement a network medium that is not susceptible to electromagnetic interference (EMI), fiber-optic cable provides a more secure, long-distance cable that is not susceptible to EMI at high speeds.

No comments:

Post a Comment